Extensions 1→N→G→Q→1 with N=C32×D7 and Q=C3

Direct product G=N×Q with N=C32×D7 and Q=C3
dρLabelID
D7×C33189D7xC3^3378,53

Semidirect products G=N:Q with N=C32×D7 and Q=C3
extensionφ:Q→Out NdρLabelID
(C32×D7)⋊1C3 = D7×He3φ: C3/C1C3 ⊆ Out C32×D7636(C3^2xD7):1C3378,30
(C32×D7)⋊2C3 = D7⋊He3φ: C3/C1C3 ⊆ Out C32×D7636(C3^2xD7):2C3378,12
(C32×D7)⋊3C3 = C32×F7φ: C3/C1C3 ⊆ Out C32×D763(C3^2xD7):3C3378,47

Non-split extensions G=N.Q with N=C32×D7 and Q=C3
extensionφ:Q→Out NdρLabelID
(C32×D7).1C3 = D7×3- 1+2φ: C3/C1C3 ⊆ Out C32×D7636(C3^2xD7).1C3378,31
(C32×D7).2C3 = C3×C7⋊C18φ: C3/C1C3 ⊆ Out C32×D7189(C3^2xD7).2C3378,10
(C32×D7).3C3 = C32.F7φ: C3/C1C3 ⊆ Out C32×D7636(C3^2xD7).3C3378,11
(C32×D7).4C3 = D7×C3×C9φ: trivial image189(C3^2xD7).4C3378,29

׿
×
𝔽